
Inter-player Delay Optimization in Multiplayer Cloud Gaming

Yuchi Chen

School of Computing Science
Simon Fraser University
Burnaby, BC, Canada

yuchi chen@sfu.ca

Jiangchuan Liu

School of Computing Science
Simon Fraser University
Burnaby, BC, Canada
Email: jcliu@sfu.ca

Yong Cui

Department of Computer Science and Technology
Tsinghua University

Beijing, China
Email: cuiyong@tsinghua.edu.cn

Abstract—Novel cloud computing technology makes multi-
player cloud gaming a reality, where players play games that
do not run on local devices, but on servers in the cloud.
Nevertheless, the necessary communication between player’s
local device and cloud server increases the response delay of
the gaming session. Besides the degrade of responsiveness,
the inter-player delay, which is the difference of response
delays perceived by players who are interacting with each
other, can significantly affect the fairness of the multiplayer
game. In this paper, we first introduce the Inter-player Delay
Optimization (IDO) problem that aims at minimizing this inter-
player delay, while preserving good-enough absolute response
delay experienced by players. We further propose an efficient
heuristic algorithm to solve the IDO problem. The evaluation
result of a comprehensive simulation using a large-scale real-
world data trace shows that IDO can reduce up to about
30% of maximum inter-player delay among interacting players
comparing with the other existing solution.

Keywords-cloud gaming, inter-player, delay, VM placement.

I. INTRODUCTION

As a novel application of cloud computing technology,

cloud gaming has become an attractive online gaming ser-

vice. An increasing number of service providers have been

involved in this new generation of gaming paradigm, such

as SONY PlayStation Now, NVIDIA GeForce NOW, Ubitus

GameNow, etc. Unlike traditional online games, the cloud-

based game does not run on player’s local device, but on

the remote server in the cloud Data Centers (DCs). The

remote server operates the game logic and streams the game

scene back to player’s client through the Internet, so that the

client can continuously show the game scene to the player,

just like the game is running by the client. Cloud gaming

enables players to play arbitrary high-quality games with

less powerful devices. With recent technology evolutions

and service promotions carried out by major players in the

industry, cloud gaming is expected to undergo a series of

dramatic upgrades in the near future [1].

Nevertheless, providing cloud gaming service with high

Quality of Experience (QoE) is a challenging task. One

essential problem with cloud gaming is that the network

connection between the player’s client and the cloud server

seriously affects the responsiveness of the game session,

which is assessed by the absolute response delay, i.e. the

time duration between the player issuing a command and

the corresponding game frame being displayed to him. As

is presented in some measurement studies [2], the absolute

response delay of a cloud gaming system can be as high as

over 550ms. This means that the player’s QoE can be hardly

guaranteed, especially in a real-time online Role Playing

Game (RPG) that usually requires this response delay to be

lower than 500ms [3, 4].

Another important issue is that cloud gaming system can

exaggerate the inter-player delay, i.e. the difference of ab-

solute response delay among players. The high inter-player

delay can lead to frustrating unfairness among interacting

players. As is revealed by Zander et al [5], in a real-time

First Person Shooter (FPS) game players with lower absolute

response delay have a clear advantage over bots with larger

delay. More precisely, as the inter-player delay increases

from 100ms to 400ms, the performance (i.e. the kill rate

in the FPS game playing) of players decreased by up to

40%. Apparently, high inter-player delay issue can be even

more harmful to QoE than the high absolute response delay

in multiplayer gaming [6].

Generally, the absolute response delay perceived by cloud

gaming players is determined by three kinds of temporal

costs [7]: (1) network delay, the time required for the cloud

server to receive player’s command and the video frames are

streamed back to the player’s client, (2) playout delay, the

time required by the client to decode and play the received

video stream, and (3) processing delay, the time needed by

the cloud server to generate the video frames according to

player’s input. Although network delay occupies most part

of the absolute response delay, some measurement studies

show that the processing delay can also take over 30%

of the absolute response delay[7]. The processing delay of

some cloud gaming services can be even as much as over

200ms[8], which can significantly reduce the responsiveness

of cloud game session. As such both network and processing

delay should be taken into account carefully when resolving

the high inter-player delay issue.

In this paper, we identify and address this important but

not yet well-solved problem: the Inter-player Delay Opti-
mization problem (IDO) in the multiplayer cloud gaming

scenario. We first introduce and formulate the IDO problem,

2016 IEEE 9th International Conference on Cloud Computing

2159-6190/16 $31.00 © 2016 IEEE

DOI 10.1109/CLOUD.2016.96

702

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:38:20 UTC from IEEE Xplore. Restrictions apply.

��� ��� ���

���

��� ��	

�
�
�
	

����������������

������������������������

���

���

���

�
�

Figure 1. Typical multiplayer cloud gaming framework

which aims at minimizing the inter-player delay among

interacting players, while preserving good-enough absolute

response delay experienced by players. We further propose

an efficient algorithm to solve the IDO problem by two

major steps. Based on the proposed algorithm, we conduct

a comprehensive evaluation based on the realworld trace

dataset called World of Warcraft Avatar History Dataset

[9], which is useful for simulating the interact patterns in

realworld multiplayer online games. We compare the per-

formance of our algorithm with the other existing solution,

showing that our algorithm can overperform the existing

mechanism under various scenarios with various scales of

players and DCs.

II. PROBLEM STATEMENT

The typical framework of cloud-based online gaming

system discussed in this paper is illustrated in Figure 1.

Different from traditional online gaming system, the game

client runs not on the player’s local device, but on the Virtual

Machines (VMs) that are hosted by cloud servers in the

cloud DCs. On one hand, these VMs appear as the players’

devices from the perspective of remote game server. On the

other hand, the VMs play the role of cloud game server that

runs the game logic. The client running on player’s device

obtains the player’s command, transfer it to the VM, receive

the video frame sent back by the VM and play it out for the

player.

Comparing with traditional online gaming, it is more

difficult to preserve good-enough responsiveness in the cloud

gaming system, due to the reason that the network delay and

processing delay are essentially required for maintaining the

game session. Although keeping the response delay below

an acceptable threshold is a priority in the online gaming

system, reducing the inter-player delay can be an even more

important task [10]. Many successful real-time multiplayer

games use specific mechanisms to get rid of high inter-player

delay issue [11, 12]. However such methods may fail in the

cloud gaming scenario, since the remote game server has no

idea of the additional network and processing delay in the

cloud gaming system. This means that the responsibility of

eliminating the impact of such kinds of delay is left to the

cloud gaming service providers.

Generally, the major task in improving the player’s QoE

in multiplayer gaming is resolving the high inter-player

delay issue [6]. The challenge in this Inter-player Delay

Optimization (IDO) problem is roughly three-fold,

• Optimizing the inter-player delay among interacting

players: this is the main but no easy task since this

is a tradeoff between the optimization of both network

delay and processing delay among all players;

• Preserving the good-enough absolute response delay:

this is a fundamental requirement of maintaining ac-

ceptable QoE for players;

• Limitation of available resources of cloud data centers:

usually a cloud gaming service provider uses a series

of cloud data centers to serve a large scale of players.

The resources of physic machines, such as the CPU-

time, memory and the storage space, are virtualized as

a whole. The optimization of VM placement should

obey the limitation of available resources of each DC.

In the following sections, we describe the IDO problem

model as well as our approach to get rid of these challenges.

III. IDO: INTER-PLAYER DELAY OPTIMIZATION

PROBLEM

Since both the network and processing delay are deter-

mined by the placement of VMs assigned to players, the

IDO problem is essentially a VM placement optimization

problem. Intuitively it is similar to the bin packing problem,

which is known as an NP-hard problem [13], but we should

make several assumptions to convert it into the IDO problem.

First we assume a scenario where players are using the

common cloud gaming service, but may be served by differ-

ent cloud data centers. Under this assumption, the network

Round-Trip Time (RTT) between each cloud data center

and the remote game server can vary in a limited range.

The second assumption is that the knowledge of interaction

pattern among players can be learned based on the locations

of their avatars in the game [14]. We mainly focus on the

case where avatars of two players in the same region group

up as an interaction pair, and there may be multiple such

pairs within this region.

Table 1 lists all the symbols used in the model. We assume

that there are N players, indexed by i and j, playing through

the cloud gaming service. The cloud gaming service provider

operates M Data Centers (DCs), indexed by m. Each of

players uses the client provided by the service provider to

access one of the DCs, and is then served by a VM assigned

by the DC. Following the parameters described above, the

IDO problem is formulated as follows,

703

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:38:20 UTC from IEEE Xplore. Restrictions apply.

min
{
max
i,j∈N

gij

}
(1)

s.t.

gij ≥ |Di −Dj | zij , ∀i, j ∈ N ; (2)

rim = nim + p(vm) + dm, ∀i ∈ N, ∀m ∈M ; (3)

vm =
P∑
i=1

xim, ∀m ∈M ; (4)

Di =
M∑

m=1

rimxim, ∀i ∈ N ; (5)

p(v) =
α

1 + e−βv
, ∀v ∈ N; (6)

D̃ ≥ Di, ∀i ∈ N ; (7)

Cm ≥
P∑
i=1

cixim, ∀m ∈M ; (8)

xim ∈ {0, 1}, ∀i ∈ N, ∀m ∈M ; (9)

1 ≥
M∑

m=1

xim, ∀i ∈ N. (10)

The IDO problem described by the objective (1) is to

minimize the maximal inter-player delay among all pairs

of interacting players. The constraint (2) defines this inter-

player delay, i.e. the difference of absolute response delay

between two interacting players. The equation (3) defines

the calculation of the absolute response delay of player i
when he is served by center m, that is, the response delay is

the combination of the network delay between the player’s

client and the VM, the processing delay of the VM, and

the network delay between the VM and the remote game

server. In this equation the playout delay is omitted. The

reason is that playout delay is too short to significantly

affect the absolute response delay, as it usually accounts

for only about 10% of processing delay [7]. The equation

(4) counts the number of VMs running inside the center

m. The equation (5) indicates that the final response delay

of player i depends on the DC his client is connected to.

The equation (6) determines the function of calculating the

process delay of a center that is running v VMs. We uses

the sigmoid function revealed by Hong et al [15] to describe

the relationship between the number of VMs and the average

processing delay of VMs in the DC. The model parameter α
and β can be derived from the actual measurements within

different scenarios. The constraint (7) defines the maximal

acceptable absolute response delay, i.e. the absolute response

delay perceived by all players cannot be higher than the

threshold D̃. The constraint (8) indicates that the resources

used by VMs should not exceed the capability of the DC.

The constraint (9) and constraint (10) restricts that each

player should be served by at most one DC.
It is easy to see that IDO is not a straightforward reduction

of the bin packing problem, in the sense that the value (i.e.

Table I. Symbols and Definitions

Symbols Definitions

N Number of players

M Number of cloud data centers (DCs)

Di Response delay experienced by player i

D̃ Maximum tolerable response delay

rim Response delay when player i is served by DC m
nim Network delay between player i’s client and DC m
dm Network delay between DC m and the remote game server

p(v) Processing delay of the DC that is serving v VMs

ci Amount of resources required by player i’s VM

Cm Amount of available resources in DC m
zij Interact state between player i and player j
gij Difference of response delay between player i and player j

the inter-player delay) of each object (i.e. players’ VMs) not

only depends on the bin (i.e. the DC) that it is finally placed

in, but also depends on the other objects that are co-placed

with it. For instance, consider the case where the placement

of a certain player’s VM is different in two solutions. In this

case, not only the inter-player delay perceived by this player

and his partner is different, but also the inter-player delay

of every other pair of interacting players. The IDO problem

can be resolved by a Dynamic Programming (DP) algorithm,

but basically such a DP method faces a great risk to regress

to an exhaustive search over solution spaces, which can take

huge exponential running time. As such the feasibility of DP

is fairly limited due to the real-time requirements, especially

when the amount of players increases to a large scale.

Therefore we focus on developing an efficient heuristic

method to achieve a near-optimal solution to this problem.

IV. INTER-PLAYER DELAY OPTIMIZATION ALGORITHM

The IDO problem can be regarded as the combination

of two sub-problems: (1) make a proper VM placement

plan for every player’s VM among all available DCs, in

order to minimize the absolute response delay perceived by

every player, and (2) make a proper VM placement that can

optimize the inter-player delay among all interacting players.

According to the equation (3), the absolute response delay

of a player is determined by the connecting DC and the

VM assigned to him. Therefore, the first sub-problem can

be regarded as a reduction of Set-Cover problem[16, 17],

where the VMs are customer points and the cloud data center

are feasible facilities, and an optimal VM placement is the

optimal cover of customer points by feasible centers that

minimizes the response delay experienced by each player.

The second sub-problem is more tricky since the solution

to the first sub-problem may not guarantee the inter-player

delay to be minimal. As such, further adjustment of VMs

may be needed in order to reduce the inter-player delay

between interacting players, which is based on both the

interacting state of players and the available sources of DCs.

Hereby a near-optimal solution can be achieved following

this heuristic local search process.

We propose an efficient heuristic algorithm to tackle this

704

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:38:20 UTC from IEEE Xplore. Restrictions apply.

IDO problem, which consists of two phases to solve the two

sub-problems respectively. The first phase is to find out the

most suitable placement of all players’ VMs, and the second

phase is to minimize the inter-player delay between inter-

acting players by adjusting the placement solution produced

in the first phase.

A. VM Placement Phase

In this phase IDO algorithm adopts the basic idea of the

classic heuristic algorithm for solving the set cover problem

[16]. At the first step, IDO generates the circular convex set
per DC, a subset of all possible covering patterns of VMs by

each DC. More precisely, for the DC m, the circular convex

set Pm = {{i1}, {i1, i2}, · · · , {i1, i2, · · · , iN}}, where all

N VMs i1, i2, · · · , iN are fully included. Each subset within

this circular convex set represents the covering of VMs by

the DC m. This circular convex set can be generated in

O(N) running time, and is sufficient for composing the near-

optimal covering solution [17].

After generating the circular convex sets of all centers,

IDO checks if the covering solution represented by a set

is feasible, according to the total resource cost of covered

VMs and the available source of the DC. If such a solution

is valid, IDO computes the relative covering cost of each

set. This relative covering cost is defined as the sum of

the absolute response delay of all players whose VMs are

covered by the DC of each set, divided by the number

of covered VMs. During each iteration IDO conducts the

calculation of relative covering cost, and choose the circular

convex set with the minimal cost. When a circular convex

set is chosen, IDO removes the VMs it covers from all the

other remaining sets, meaning that each VM can only be

located in a certain DC. Hereby at least one player will be

properly served in each iteration, which makes at most N
iterations in total.

B. Adjustment Phase

After the VM placement phase, a near-optimal placement

of each player’s VM is derived. This VM placement solution

however does not guarantee that the inter-player delay

between interacting players is minimized, hence further

adjustment of this placement solution is necessary. We use

a local search strategy to achieve the goal of minimizing

the maximal inter-player delay while preserving low-enough

absolute response delay.

For each pair of interacting players, IDO tries to place

the VM of the player with higher absolute response delay

to another feasible DC, and check if the inter-player delay

between two players is reduced. IDO also checks if the

absolute response delay of the moved VM is still under

the threshold D̂. In this method IDO tries to find the

modification with the minimal inter-player delay between

two players in each iteration. Since the interacting groups

are disjoint, it takes O(N) running time to go through all

pairs of interacting players. During each iteration it takes

O(M) running time to check the available DC for each pair

of interacting players. Hereby IDO takes O(MN) running

times to adjust the VM placement to a near-optimal solution.

Algorithm 1 Inter-player Delay Optimization Algorithm

Input: {zij}: interact state, �Cm: resources per center m,
�Ci: cost per player i, {nim}: network delay between

player i and center m, �dm: network delay from center

m to server

Output: {xim}
1: Derive all circular convex sets Pm for each DC m ∈M ,

set COV ER = ∅
2: repeat
3: Remove the circular convex set Pm that does not satisfy

the resource constraint of DC m, based on the inequa-

tion (8)

4: Calculate the relative covering cost
∑

i∈Pm
Di of each

circular convex set Pm for m ∈ M based on equation

(3) and (5)

5: Find m0 such that∑
i∈Pm0

Di

|Pm0 | = maxi∈N,m∈M (
∑

i∈Pm
Di

|Pm|)

6: COV ER← COV ER ∪ Pm0

7: for m← 1 to M
8: Pm ← Pm − Pm0

9: end for
10: until Pm = ∅ for all m ∈M
11: for i← 1 to N
12: if zij = 1, find m1 such that |Di −Dj | is minimized,

where i ∈ Pm1 or j ∈ Pm1 ,

13: xim1 ← 1 if i ∈ Pm1 , xjm1 ← 1 if j ∈ Pm1

14: end for
15: return {xim}

The pseudo code of IDO is shown in Algorithm 1.

IDO tends to arrange less DCs to support all players, thus

VMs are more likely to consolidate in certain DCs. This

follows the nature of multiplayer online gaming systems,

which adopts server consolidation to reduce the cost of

maintaining game contents and sessions [14]. Although

some measurement studies show that higher consolidation

degree of workloads may not degrade the performance of

a single server [18], consolidations at a large scale impact

the processing performance of servers in DC, in the sense

that consolidating VMs can result in higher processing delay.

However, the consolidation degree is properly under control

in IDO process since it takes the processing delay into

account (as a part of absolute response delay). Hereby

IDO is capable of reduce the number of necessary DCs

while preserve a tolerable processing delay. In the following

section we show the good performance of IDO algorithm

with the comprehensive evaluation using the real world data

trace, and compare IDO with the other existing mechanism

from several perspectives.

705

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:38:20 UTC from IEEE Xplore. Restrictions apply.

V. PERFORMANCE EVALUATIONS

A. Experiment Setup
We use the well-developed avatar history dataset of World

of Warcraft (WoW) as the input of the experiment [9]. This

dataset records the avatars’ game play times and a number

of attributes, such as their races, classes, current level, and

locations within the game world, during the period between

Jan. 2006 and Jan. 2009. The dataset consists of records of

more than 90,000 avatars, which are useful for deriving the

interaction pattern between players.
We choose different parts of datasets to establish different

scenarios, and we use disjoint sets (where 1000 records are

included per set) in each scenario. Based on the intuitive

observation that the players co-located in the same region

tend to cooperate or fight with each other, players are

grouped up mainly based on the location of their avatars.

We assume that the interactions among players are pairwise,

in order to simulate the most usual interactive behaviors

in WoW, such as bargaining and dueling. Furthermore, we

also use this dataset to simulate the distribution of DCs of

the cloud gaming service provider. We take every region

as a game world served by a single DC. As such we

establish 100 DCs in the simulations, and the number of

DCs varies in different experiments. Two kinds of network

delay, i.e. the network delay between the players’ clients and

DCs, and the network delay between DCs and the game

server, are intuitively set to reflect the fact that they can

vary dramatically throughout regions and time periods [19].

Basically the network delay between players and DCs ranges

from 5 to 200ms, while the network delay between DCs and

the remote game server varies from 10 to 50ms.
We use the above setup to evaluate our heuristic algorithm

from three perspectives: (1) its capability of minimizing the

inter-player delay among interacting players, (2) its capa-

bility of preserving a low-enough absolute response delay

experienced by every player, and (3) its ability of efficiently

arranging DCs to support all players, while preserving

low-enough processing delay. From these perspectives, we

compare the performances of our IDO algorithm with the

Quality-Driven Heuristic algorithm (QDH), a VM placement

algorithm that arranges the VMs according to the network

delay between players and servers [15].

B. Capability of Minimizing the Inter-player Delay
The major objective of IDO problem is to minimize

the inter-player delay among interacting players. In the

following experiments, we change the scale of workloads to

assess the ability of IDO algorithm to reduce the inter-player

delay. More precisely, we conduct experiments in three kinds

of scenarios where there are: (1) 100 players and 50 DCs,

(2) 500 players and 50 DCs and (3) 1000 Players and 50

DCs. Within each case we randomly choose player records

as input. We adopt similar setups in the other following

experiments.

Figure 2 depicts the Cumulative Distribution Function

(CDF) of the inter-player delays of interacting players pro-

vided by IDO algorithm and QDH within these cases. In

all of these cases IDO algorithm significantly outperforms

QDH, i.e. IDO algorithm provides the result where inter-

player delay among players is low, comparing with the

QDH’s result. Figure 3 shows that IDO algorithm reduces

the maximal inter-player delay by about 30% comparing

with QDH. Even when there is a large amount of workload

(i.e. 1000 players with 50 DCs), IDO algorithm can still

keep the maximal inter-player delay under 70ms, so that

the interacting players can hardly perceive the delay gap

between them. In the case where there are not so sufficient

DCs (i.e. only 10 DCs are used to support 500 players),

IDO algorithm performs similarly with QDH, i.e. the relative

difference of maximum inter-player delays provided by IDO

and QDH is only around 10%. Although IDO algorithm

tends to consolidate VMs on a set of DCs, When DCs are

not sufficient IDO has no choice but to arrange more DCs

to fulfill all requirements. The reason why QDH performs

poorer when DCs are sufficient is that it tends to evenly

assign VMs to DCs, and it does not take the difference of

response delays among players into account.

In further experiments, as the number of player increases,

the inter-player delay of interacting players in IDO’s result

does not vary explicitly. This means that IDO algorithm is

able to reach near-optimal solution despite the variation in

number of players and DCs. Hereby, comparing with QDH,

IDO algorithm is capable of reducing the variance of inter-

player delay under different scenarios.

C. Capability of Preserving Low-Enough Absolute Response
Delay

Beside of minimizing the inter-player delay, IDO algo-

rithm can also preserve the good-enough responsiveness of

the game session, i.e. maintaining the absolute response

delay experienced by players below a tolerable threshold.

In the following experiments, we vary both the numbers of

players and DCs in order to assess IDO’s ability to guarantee

acceptable absolute response delay under different circum-

stances. Beside of minimizing the inter-player delay, IDO

algorithm can also preserve the good-enough responsiveness

of the game session, i.e. maintaining the absolute response

delay experienced by players below a tolerable threshold.

In the following experiments, we vary both the numbers

of players and DCs in order to assess IDO’s ability to

guarantee acceptable absolute response delay under different

circumstances.

Figure 4 illustrates the CDF of the absolute response

delays of interacting players provided by the IDO algorithm

and QDH. As can be seem from the results, IDO algorithm

still generally outperforms QDH when the workload is light

(i.e. 100 players with 50 DCs), in the sense that more

players perceive lower absolute response delay. However,

706

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:38:20 UTC from IEEE Xplore. Restrictions apply.

Inter-Player Delay (ms)
0 5 10 15 20 25 30 35 40 45

C
D

F
of

 In
te

r-
P

la
ye

r D
el

ay

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IDO
QDH

(a) 100 Players and 50 DCs

Inter-Player Delay (ms)
0 10 20 30 40 50 60

C
D

F
of

 In
te

r-
P

la
ye

r D
el

ay

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IDO
QDH

(b) 500 Players and 50 DCs

Inter-Player Delay (ms)
0 20 40 60 80 100 120

C
D

F
of

 In
te

r-
P

la
ye

r D
el

ay

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IDO
QDH

(c) 1000 Players and 50 DCs

Figure 2. CDF of inter-player delays Under Different Workloads

Number of Players
100 200 500

M
ax

im
um

 In
te

r-
P

la
ye

r D
el

ay
 (m

s)

0

50

100

150

200

250

300

IDO
QDH

(a) 10 DCs

Number of Players
100 200 500

M
ax

im
um

 In
te

r-
P

la
ye

r D
el

ay
 (m

s)

0

10

20

30

40

50

60

70

80

90

100

IDO
QDH

(b) 50 DCs

Number of Players
100 200 500

M
ax

im
um

 In
te

r-
P

la
ye

r D
el

ay
 (m

s)

0

20

40

60

80

100

120

IDO
QDH

(c) 100 DCs

Figure 3. Maximum inter-player delays Under Different Workloads

when the number of players increases, the minimal absolute

response delay provided by IDO algorithm significantly

increases, as can be seem from Figure 4(b) and Figure 4(c).

In these two cases QDH can reach a better lower-bound

and similar higher-bound with the result of IDO algorithm

in the worst case. The reason is that IDO tends to make

the absolute response delay perceived by two interacting

players as similar as possible, this means that a player who

can have better performance has to regress to his partner in

order to preserve the fairness between them. This result is in

consistence with the purpose of IDO algorithm. Furthermore,

even in case where workload is heavy (e.g. 1000 players with

50 DCs), IDO still keeps the maximal absolute response

delay below 230ms. Given that the threshold of tolerable

absolute response delay in a massive multiplayer game is

500ms, this result is relatively acceptable.

D. Efficientiveness of DC Usage and Preserving Processing
Delay

IDO algorithm tends to consolidate VMs over a set of

DCs, i.e. it is capable of reducing the number of necessary

DC to support all players. However, this strategy may lead to

a risk of increasing the processing delay, since the processing

delay is positively relative to the number of VMs [15]. In

the following experiments we vary the number of players

to quantify the ability of IDO algorithm to preserve the

processing delay. We also change the number of available

DCs, intending to verify that if IDO can efficiently make

use of DCs.

Figure 5 depicts the processing delay under scenarios with

different workloads, i.e. the different scale of players’ VMs.

Comparing with QDH, IDO algorithm does not preserve the

change of processing delay within a small range. However

the evaluation results still show that IDO algorithm can

maintain the processing delay under a tolerable threshold.

Even in a scenario at scale, i.e. where 1000 players are

interacting through 50 DCs, the IDO algorithm can keep the

maximal processing delay below 110ms, which is relatively

acceptable in the case where the workload is heavy.

Furthermore, Figure 6 shows that IDO algorithm can

always use as less DCs as possible to support players, while

QDH tends to use more DCs since it adopts a fairness

strategy among DCs. This means that our algorithm can save

the necessary resource cost of supporting a large number of

players.

VI. RELATED WORK

Optimizing VM placement. Specifically, there are ma-

jorly two studies closely related to our work on the topic

of VM placement optimization. Wang et al [10] propose

a Cloud-Based Distributed Interactive Applications (CDIA)

framework and a bi-level heuristic algorithm that solving

707

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:38:20 UTC from IEEE Xplore. Restrictions apply.

Absolute Response Delay (ms)
90 95 100 105 110 115 120 125 130 135 140

C
D

F
of

 A
bs

ol
ut

e
R

es
po

ns
e

D
el

ay

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IDO
QDH

(a) 100 Players and 50 DCs

Absolute Response Delay (ms)
90 100 110 120 130 140 150 160 170 180

C
D

F
of

 A
bs

ol
ut

e
R

es
po

ns
e

D
el

ay

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IDO
QDH

(b) 500 Players and 50 DCs

Absolute Response Delay (ms)
80 100 120 140 160 180 200 220 240

C
D

F
of

 A
bs

ol
ut

e
R

es
po

ns
e

D
el

ay

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IDO
QDH

(c) 1000 Players and 50 DCs

Figure 4. CDF of Absolute Response Delay Under Different Workloads

DC No.
0 5 10 15 20 25 30 35 40 45 50

P
ro

ce
ss

in
g

D
el

ay
s

(m
s)

74

75

76

77

78

79

80

IDO
QDH

(a) 100 Players and 50 DCs

DC No.
0 5 10 15 20 25 30 35 40 45 50

P
ro

ce
ss

in
g

D
el

ay
s

(m
s)

70

75

80

85

90

95

100

IDO
QDH

(b) 500 Players and 50 DCs

DC No.
0 5 10 15 20 25 30 35 40 45 50

P
ro

ce
ss

in
g

D
el

ay
s

(m
s)

70

75

80

85

90

95

100

105

110

IDO
QDH

(c) 1000 Players and 50 DCs

Figure 5. Processing Delay Under Different Workloads

the optimization problem of VM placement within this

framework. They aim at reducing the interact latency be-

tween interacting VMs, and adopt a two-step method to

partition this problem into load assignment and the resource

assignment. Our works differs from this work in the sense

that in the IDO problem scenario, the VMs of two players

are not directly communicating with each other, but com-

municates through the remote game server, just as the hub-

and-spoke communication model in traditional multiplayer

online gaming. In addition, the solution proposed by Wang

et al do not take the absolute response delay of every user

into account, while our IDO algorithm will preserve low-

enough absolute response delay for players. The other study

is proposed by Hong et al [15], where they proposes a VM

placement algorithm that can minimize the management and

operation cost of the cloud gaming platform while preserve

good-enough experience. However, although both our work

and theirs are capable of reducing the necessary resources,

they mainly focus on increasing the service provider’s profit,

while we aim at improving the players’ gaming experience.

Previous studies have made a comparison on various

VM placement algorithms from several perspectives [20].

Meng et al [21] propose the VM placement algorithm that

optimizes the routing for inter-VM communication. Li et

al [22] study the VM placement optimization problem over

a set of physical machines (i.e. cloud servers), in order to

reduce the number of necessary machines and the cost of

network traffic among them. Calcavecchia et al [23] provide

a model of VM placement that adopts statistical multiplexing

and analysis of historical workload traces to assign VMs to

certain physical machines. Tian et al [24] propose a VM

placement and migration algorithm to reduce the cost of

data centers by adaptively adjusting the assignment of data

centers, virtual machines and video bitrate configurations for

users.

Reducing processing delay. Chuah et al [25] propose a

massive multiplayer online gaming platform based on cloud

gaming system that uses the render ability of player’s mobile

device, so that both the network delay and processing delay

are reduced. Choy et al [26] present the smart edge to reduce

the initialization of VMs when players issue the gaming

request, in order to reduce the processing delay on the server

side. Cai et al [27] provide a multiplayer cloud gaming

platform that takes advantage of peer-to-peer connection to

share the jointing frames of the common game scenes, so

that the processing delay at server side is partially hided by

early frames delivered by other players.

As a complement of existing work, our work mainly

focus on reducing the inter-player delay among interacting

players, meanwhile maintaining the absolute response delay

perceived by every player below the tolerable threshold.

708

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:38:20 UTC from IEEE Xplore. Restrictions apply.

Number of Available DCs
50 100

N
um

be
r o

f U
se

d
D

C
s

0

10

20

30

40

50

60

70

80

IDO
QDH

(a) 100 Players

Number of Available DCs
50 100

N
um

be
r o

f U
se

d
D

C
s

0

10

20

30

40

50

60

70

80

90

100

IDO
QDH

(b) 200 Players

Number of Available DCs
50 100

N
um

be
r o

f U
se

d
D

C
s

0

10

20

30

40

50

60

70

80

90

100

IDO
QDH

(c) 500 Players

Figure 6. Number of Used DCs Under Different Workloads

VII. CONCLUSION

In this paper, we first identify and formulate the Inter-

player Delay Optimization (IDO) problem that aims at

minimizing the inter-player delay among interacting play-

ers, while preserving good-enough absolute response delay

perceived by players. We further propose the heuristic IDO

algorithm to efficiently reach the near-optimal solution to

this problem. The comprehensive evaluation using a large-

scale real-world data trace shows that our IDO algorithm can

reduce up to about 30% maximal inter-player delay compar-

ing with the other existing algorithm. Also the evaluation

result shows that our IDO algorithm can help reduce the

number of necessary DCs while supporting players at a large

scale.

ACKNOWLEDGEMENT

This publication was made possible by NPRP grant #

[8-519-1-108] from the Qatar National Research Fund (a

member of Qatar Foundation). The findings achieved herein

are solely the responsibility of the authors.

REFERENCE

[1] W. Cai et al. The future of cloud gaming [point of view]. Proceedings
of the IEEE, 104(4):687–691, 2016.

[2] K. Chen et al. On the quality of service of cloud gaming systems.
IEEE Transactions on Multimedia, 16(2):480–495, 2014.

[3] R. Shea et al. Cloud gaming: architecture and performance. IEEE
Network, 27(4):16–21, 2013.

[4] M. Claypool and K. Claypool. Latency and player actions in online
games. Communications of the ACM, 49(11):40–45, 2006.

[5] S. Zander et al. Achieving fairness in multiplayer network games
through automated latency balancing. In Proceedings of the 2005
ACM SIGCHI International Conference on Advances in computer
entertainment technology, pages 117–124. ACM, 2005.

[6] T. Henderson. Latency and user behaviour on a multiplayer game
server. In Networked Group Communication, pages 1–13. Springer,
2001.

[7] K. Chen et al. Measuring the latency of cloud gaming systems. In
Proceedings of the 19th ACM international conference on Multimedia,
pages 1269–1272. ACM, 2011.

[8] Z. Wen et al. Qoe-driven performance analysis of cloud gaming
services. In 2014 IEEE 16th International Workshop on Multimedia
Signal Processing (MMSP), pages 1–6. IEEE, 2014.

[9] Y. Lee et al. World of warcraft avatar history dataset. In Proceedings
of the second annual ACM conference on Multimedia systems, pages
123–128. ACM, 2011.

[10] H. Wang et al. On design and performance of cloud-based distributed
interactive applications. In 2014 IEEE 22nd International Conference
on Network Protocols (ICNP), pages 37–46. IEEE, 2014.

[11] J. Färber. Network game traffic modelling. In Proceedings of the 1st
workshop on Network and system support for games, pages 53–57.
ACM, 2002.

[12] Yahn W Bernier. Latency compensating methods in client/server
in-game protocol design and optimization. In Game Developers
Conference, volume 98033, 2001.

[13] G. Michael and J. David. Computers and intractability: a guide to the
theory of np-completeness. WH Free. Co., San Fr, 1979.

[14] Y. Lee and K. Chen. Is server consolidation beneficial to mmorpg?
a case study of warcraft. In 2010 IEEE 3rd International Conference
on Cloud Computing (CLOUD), pages 435–442. IEEE, 2010.

[15] H. Hong et al. Placing virtual machines to optimize cloud gaming
experience. IEEE Transactions on Cloud Computing, 3(1):42–53,
2015.

[16] D. Hochbaum. Approximation algorithms for the set covering and
vertex cover problems. SIAM Journal on computing, 11(3):555–556,
1982.

[17] D. Hochbaum. Heuristics for the fixed cost median problem. Math-
ematical programming, 22(1):148–162, 1982.

[18] H. Hong et al. Gpu consolidation for cloud games: Are we there yet?
In Proceedings of the 13th Annual Workshop on Network and Systems
Support for Games, page 3. IEEE Press, 2014.

[19] J. Kim et al. Traffic characteristics of a massively multi-player online
role playing game. In Proceedings of 4th ACM SIGCOMM workshop
on Network and system support for games, pages 1–8. ACM, 2005.

[20] K. Mills et al. Comparing vm-placement algorithms for on-demand
clouds. In 2011 IEEE Third International Conference on Cloud
Computing Technology and Science (CloudCom), pages 91–98. IEEE,
2011.

[21] X. Meng et al. Improving the scalability of data center networks with
traffic-aware virtual machine placement. In INFOCOM, pages 1–9.
IEEE, 2010.

[22] X. Li et al. Let’s stay together: Towards traffic aware virtual machine
placement in data centers. In INFOCOM, pages 1842–1850. IEEE,
2014.

[23] M. Calcavecchia et al. Vm placement strategies for cloud scenarios.
In 2012 IEEE 5th International Conference on Cloud Computing
(CLOUD), pages 852–859. IEEE, 2012.

[24] H. Tian et al. On achieving cost-effective adaptive cloud gaming
in geo-distributed data centers. IEEE Transactions on Circuits and
Systems for Video Technology, 25(12):2064–2077, 2015.

[25] S. Chuah et al. Cloud gaming: a green solution to massive multiplayer
online games. Wireless Communications, IEEE, 21(4):78–87, 2014.

[26] S. Choy et al. A hybrid edge-cloud architecture for reducing on-
demand gaming latency. Multimedia Systems, 20(5):503–519, 2014.

[27] W. Cai and V. Leung. Multiplayer cloud gaming system with
cooperative video sharing. In 2012 IEEE 4th International Conference
on Cloud Computing Technology and Science (CloudCom), pages
640–645. IEEE, 2012.

709

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:38:20 UTC from IEEE Xplore. Restrictions apply.

